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Abstract

Unconventional computing seeks to develop new means of
acting on and interpreting the world. These emerge when
new tools and computational substrates are built or discov-
ered, or when existing artifacts are deployed in novel ways.
Prior work designed sheets of vibrating particles to achieve
mechanical polycomputation, wherein multiple logical oper-
ations were physically executed by the same parts at the same
time. This works by exploiting the vibrational superposition
of particles induced by external drives acting at multiple fre-
quencies. In this paper, we introduce an idea called refractive
computation, in which a sufficiently high density of polycom-
puted logic gates results in parallelized computations across
driving frequencies. Parallelized logic gates are split across
external drive frequencies in a single simulation, and emerge
in the course of polycomputing sequential logic gates.

Introduction
Motivation and prior work.
Continued advances in machine capability will be under-
written by advances in materials science and hardware de-
sign. Material conditions set the terms of intellectual life;
while at the same time, as the history of deep learning shows,
useful ideas may greatly predate the possibility of their ma-
terial instantiation (Pasquinelli, 2023). Ongoing research
into unconventional substrates for computation aims both to
improve extant machines, and push the boundaries of what
is possible with artificial constructs (Pask, 1958, 1960; Sina-
payen et al., 2017; Zhu et al., 2018; Wu et al., 2019; Naka-
jima, 2020; Bongard and Levin, 2021; Dillavou et al., 2022;
Stern and Murugan, 2023; Jaeger et al., 2023).

Chemical and biological computing in particular have
been characterized as intrinsically parallel, and possessed of
multi-scale competence (Conrad, 1972, 1985; Gorecki et al.,
2015; McMillen and Levin, 2024). Increasingly, however,
purely mechanical systems are being shown to exhibit anal-
ogous properties when the right operational constraints are
applied (Pashine et al., 2019; Serra-Garcia, 2019; Zangeneh-
Nejad et al., 2020; Yasuda et al., 2021; Kaspar et al., 2021;
El Helou et al., 2022; Jiao et al., 2023; Bongard and Levin,
2023; Mei and Chen, 2023). One such property is poly-
computation, wherein multiple computations can executed

Figure 1: Visualization of an evolved granular assembly
with two input particles (green sticks), one output particle
(red star), and one source particle (pink circle). Evolution
sets the stiffness ratios of all particles, represented by a grey-
scale color map, as well as the indices of the input, output,
and source particles. In this example, one of the input par-
ticles is being vibrated horizontally, while the other is not.
This corresponds to an input of 1 and 0.

by the same parts at the same time with respect to differ-
ent factors (Parsa et al., 2023). This paper builds on the
prior demonstration of polycomputation by first increasing
the computational density of a simulated granular metama-
terial (from two sequential logic gates to four) and next by
reporting a qualitatively new property of polycomputational
assemblies: refractive computation.

Utilizing the capacity of polycomputing systems to per-
form multiple operations simultaneously, we evaluate the
set of logically possible inputs to a two-input logic gate all
at once, in a single simulation. We show that when four
distinct sequential logic gates are evaluated for each logi-
cally possible input in a specific order over four simulations,
each simulation can be used to evaluate a unique parallelized
logic gate. Refractive computation is then a byproduct or
side-effect (Rosen, 1994) of the operations that realize poly-
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Figure 2: (A) For a sequential logic gate (e.g. NAND) com-
putation is defined as the selective amplification of exter-
nal drives on input particles, following stimulation patterns
s=[s0, s1, s2, s3], represented as binary strings, at frequency
ω0. The kth binary value in the jth cell indicates whether
the kth input particle is externally driven during simulation
sj . For each pattern, or switch string, an independent simu-
lation is run, and the resulting gain at the output particle is
recorded. Sequential computation then occurs across sim-
ulations, and only instantiates a logic gate if the recorded
gains from each simulation agree with the target gains for
that gate. Bold values indicate the switch strings for which
the target gain is equal to 1, while non-bold values indicate
a target gain of 0. (B) Polycomputation for the visualized
matrix, S, is said to occur when the same parts are used to
compute two or more functions at the same time. Pictured
are two sequential NAND gates, each operating at a differ-
ent frequency, over four simulations. The kth binary value
in cell Scj indicates whether the kth input particle is exter-
nally driven during simulation j at frequency ωc.

computation. Parallelization may thus help scale mechanical
computation to more complex functions, which might other-
wise take prohibitively long to execute. Additionally, our
work may be relevant to the philosophy of computation and
embodiment, since it implies that auxiliary functions may be
lurking in the specific operations that carry out a computa-
tion. For the observer who attends to the details of these op-
erations, rather than just the computations they finally real-
ize, additional information may be extracted about the com-
puting system and the inputs over which it computes.

In the next section, we describe the system in which we
simulate mechanical computation, before describing in de-
tail what polycomputation is, and how it can be used for
refractive computation.

Computational granular metamaterials.
Granular metamaterials are objects whose discrete parts, or
granules, have been arranged in such a way as to yield
unique properties resulting from their interaction (Wu et al.,
2019; Pashine et al., 2019; Parsa et al., 2022b, 2023;
Zangeneh-Nejad et al., 2020; Jiao et al., 2023). These differ
from traditional composite materials in that their emergent
properties are either qualitatively distinct from those found
in nature, or that change with the activity of their parts and
the environment in which they are embedded. Computa-
tional granular metamaterials (CGMMs) are those metama-
terials whose emergent properties can be exploited for prob-
lems that are historically the ken of digital computers (Wu
et al., 2019; Parsa et al., 2022b,a, 2023).

Prior work demonstrated that CGMMs can be built in sim-
ulation from two-dimensional sheets of idealized circular
particles, whose sole means of interaction is the exertion
of mechanical force. Using particle vibrations instead of
voltage to represent inputs and outputs, these materials are
configured to mechanically compute two-input logic gates.
Externally applied vibrations along the x-axis of certain par-
ticles, realized by sinusoidal waves with amplitude, A, and
frequency, ω, may be dampened or amplified in the mate-
rial depending on the collective properties of its constituent
parts. Differential amplification of external vibrations is
measured as horizontal particle displacement at ω elsewhere
in the material, and is taken to be the output computed by the
sheet as a whole. For a driven particle, k, and initial horizon-
tal position, xk(t = 0), the function that describes external
horizontal driving under driving force, dωk , is given by:

xk(t) = xk(0) + dωk

= xk(0) + ηkAsin(ωt)
(1)

Where ηk is a binary switch for the kth particle that either
applies (ηk = 1) or withholds (ηk = 0) the external drive.

To evaluate a K-input logic gate over 2K simulations, K
input particles, {I0, ..., I(K−1)}, are subject to external driv-
ing under all logically possible values for a binary string

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal2024/36/72/2461159/isal_a_00807.pdf by Yale U
niversity user on 23 M

ay 2025



of length K, where index k gives the binary switch for the
kth input particle. Input particles are thus either externally
driven, or they are not. The 2K possible switch strings for a
K-input gate are contained in a list, s, whose jth index gives
the switch string used in the jth simulation. Thus, for a two-
input logic gate with s = [‘00’, ‘01’, ‘10’, ‘11’], the switch
string for the 2nd simulation, s2, is equal to ‘10’, with bi-
nary switches s2(0)=1 and s2(1)=0 for respective inputs I0

and I1. This means that particle I0 is driven, and particle I1

is not. The external drive on the assembly for the jth simu-
lation is then represented as a function which takes a switch
string as input, and generates K drives as output:

Fω
x (sj) = (dω0 , ...,d

ω
K−1) =


sj(0)A sin(ωt)

...

sj(K−1)A sin(ωt)

(2)

If sj(k) = 0, the drive is not applied to particle k. Due to
interparticle forces resulting from external drives, other par-
ticles in the assembly will exhibit varying amounts of hor-
izontal displacement at the driving frequency, ω. For each
of N designated output particles, {O0, ...,ON−1}, high dis-
placement under Fω

x (sj) is interpreted as signaling a value
of ‘1’, while low displacement is interpreted as signaling a
value of ‘0’. Displacement of the nth output particle during
the jth simulation, at frequency ω, is calculated as the gain
of that particle under input Fω

x (sj):

Gn
sj (ω) =

f̂ω
x ( O

n
sj )

K−1∑
k=0

f̂ω
x (I

k)

(3)

Since the object of concern is the vibrational response
of the output particle at the driving frequency, ω, the fast
Fourier transform, f̂ω

x , is used to isolate particle behavior at
just this frequency in the x-direction, ignoring its other vi-
brational modes. With a single output particle, we drop the
superscript notation on Gsj (ω) and Osj . Gain at ω in the
absence of external drive (sj =‘00’) can still be meaning-
fully quantified due to the inclusion of a source particle that
vibrates constantly at the driving frequency for each sim-
ulation. Combining observed gains for all possible switch
strings allows us to measure how well the granular assembly
instantiates the desired logic gate at the nth output particle.

Rational design of granular assemblies can be achieved by
optimizing the properties of particles that collectively am-
plify or dampen supplied forces, like mass, modulus, posi-
tion, and shape. In this paper, we vary only particle stiffness,
as well as the indices of input, output, and source particles.
Choosing these values for an arbitrary logic gate involves
non-intuitive design considerations, and thus was delegated
to an evolutionary algorithm.

Figure 3: Evaluation of a K-input logic gate can be paral-
lelized across frequencies in the event that (i) a polycompu-
tational material instantiates at least 2K K-input sequential
logic gates over 2K different frequencies; and, (ii) when the
set of switch strings used in the jth simulation covers the
set of logically possible inputs to the K-input parallel gate.
Parallelized computations are read along the columns of the
visualized matrix, S (where A=I0, B=I1). As before, the
kth binary value in cell Scj indicates whether the kth input
particle is externally driven during the jth simulation at fre-
quency ωc. When a granular assembly polycomputes the se-
quential logic gates NAND, AND, NOR, and OR at respec-
tive frequencies ω0, ω1, ω2, ω3, following switch strings,
S0:, S1:, S2:, S3:, a new logic gate, parallelized over all driv-
ing frequencies, can be defined for each of the j simulations.
A parallel logic gate exists for each simulation just in case S
realizes a Latin square, for which each switch string occurs
exactly once in a given column and row. Finally, logic gates
may be defined across both simulations and frequencies, e.g.
along the diagonals of S, yielding XOR and XNOR. The
recipe for an XOR gate would then consist in attending to
frequency ω0 at j=0, ω1 at j=1, ω2 at j=2, and ω3 at j=3, or
[S00, S11, S22, S33]. Recipes for the computation of the six
remaining logically possible gates: 0=[S10, S01, S32, S23]
, 1=[S20, S31, S02, S13], A=[S00, S21, S32, S13], ¬A=[S20,
S01, S12, S33], B=[S30, S11, S02, S23], ¬B=[S10, S31, S22,

S03]. Although one may interpret assembly behavior as
instantiating logic gates this way, each such recipe requires
the application of input drives in the precise manner given

by S. This argument also applies to parallelized gates.
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Figure 4: (A) Evolutionary history of the population mean
(dashed lines) and population minimum (solid lines) for
each independent trial (n=10). Mean and standard deviation
for each logic gate in the population minimums are reported
in the column on the right. (B) Observed gain values for
each of the four evolved logic gates in the fittest materials
over all evolutionary trials. Bold values indicate a target gain
of 1, while non-bold values indicate a target gain of 0. For
the corresponding matrix of switch strings, S (Fig. 3), we re-
port a binary matrix of gains for an arbitrary threshold=0.2,
and report whether the logic gates of S are faithfully exe-
cuted by the material (0=no, 1=yes). Mean and standard
deviation for each parallel logic gate in the fittest material
from each trial is reported in the bottom right.

Polycomputation.
When a single two-input sequential logic gate is desired, the
driving force and vibrational response of the granular assem-
bly involve just one frequency, ω, and yield an observed gain
for each of the four possible switch strings. Yet the full vi-
brational response of a particle to the mechanical forces that
act on it is equal to the superposition, or linear sum, of all
its individual vibrational normal modes. Since the principle
of superposition enables independent analysis of each vibra-
tional mode, the potential arises for multiple gates operating
simultaneously in the same material, each associated with a
different driving frequency.

Prior work exploited the principle of superposition to ac-
commodate two simultaneous NAND gates sharing the same
input and output particles (Parsa et al., 2023). In this work, a
NAND gate operating over frequency ω0 was evidenced by

Figure 5: Successful computation under changes to the
switch matrix, S.

the observed gains, {Gsj (ω0)} for j = 0, 1, 2, 3, at the same
time that a NAND gate operating over frequency ω1 was ev-
idenced by the observed gains, {Gsj (ω1)} for j = 0, 1, 2, 3.
Generically, the term “polycomputation” denotes the phe-
nomenon in which the same parts are used to compute two
or more functions at the same time.

External drives acting on polycomputational CGMMs in
the jth simulation are calculated as the sum of driving forces
at C different frequencies, where C represents the number of
logic gates embedded in the material:

xk(t) = xk(0) +

C−1∑
c=0

dωc

k (4)

Input drives for C logic gates can be abbreviated as
Fω0
x (sj)Fω1

x (sj)...F
ωC−1
x (sj).

Refractive computation.
For polycomputational materials, the value of sj for C si-
multaneous computations now becomes salient, since every
input drive for a given computation coincides with C − 1
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Figure 6: (A) For each sequential logic gate, we vary the frequency at which its input patterns are evaluated, holding fixed all
other gates. Inset text indicates which gate we vary the frequency for. Vertical dashed lines denote the native frequency of each
gate. (B) Distributed computation in the granular assembly whose stiffness ratios are visualized in Fig. 1.

other input drives that modulate the mechanical activity
of the input particles. This is significant because the be-
havior of the assembly when the switch strings of two si-
multaneous computations are identical, e.g. input drive
= Fω0

x (‘10’)Fω1
x (‘10’), may diverge from the behavior of the

assembly when their switch strings are different, e.g. input
drive = Fω0

x (‘00’)Fω1
x (‘10’). No special consideration for

the order of s was given in prior work, as logic gates were
simultaneously evaluated for the same input pattern only af-
ter evolutionary optimization (Parsa et al., 2023). This ap-
proach requires 4C sequential evaluations during evolution
for two-input logic gates, and thus scales linearly in time
with the number of gates desired.

Evolution can be made more efficient by evaluating logic
gates simultaneously, collapsing 2KC evaluations into just
2K evaluations, but this may frustrate the optimization of
any single logic gate. Conversely, simultaneous evaluation
could render gates susceptible to corruption if their evolved
mechanisms takes advantage of mechanical effects induced
by input drives at other frequencies. In this case, withhold-
ing input frequency ω0 may disable a logic gate operating
over frequency ω1. Such ‘entwining’ of physical processes
has been reported previously under different circumstances,
but is not unambiguously bad from the perspective of the en-
gineer (Pask, 1958; Thompson, 1997). We reserve for a later
date analysis of how simultaneous logic gates might inter-

fere or synergize, and instead ask whether, and under what
conditions, qualitatively new properties can be surfaced by
a quantitative increase in polycomputational density.

We propose here that one such property is the parallel
computation of logic gates across the set of forces that con-
currently act on the assembly. When the number of sequen-
tial logic gates embedded in a polycomputational material
equals the number of logically possible switch strings to an-
other logic gate (e.g. 4 gates for a two-input logic gate), and
each switch string occurs exactly once at a unique frequency
for a given simulation (e.g. ‘00’ at ω0, ... , ‘11’ at ω3), the
set of gains at each driving frequency during that simulation
can be said to represent the full set of outputs for a new logic
gate computed in parallel over the set of concurrent driving
forces. We refer to this phenomenon as refractive computa-
tion.

With two-input (sequential) logic gates, we can represent
the switch strings for a C = 4 polycomputational assembly
as a 4 by 4 matrix, S, where each row is a list of j switch
strings for the computation occurring at the cth frequency.
A parallelized logic gate for the jth simulation is then pos-
sible if S is constructed such that all C external drives, Fωc

x ,
at j receive a unique switch string. The observed gain of the
output particle at the cth frequency during the jth simula-
tion is then the output computed by the sheet for the input
specified by cell Scj , and the set of all gains for the jth sim-
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ulation represents the full set of outputs for the parallelized
gate. Computation of a parallelized logic gate thus occurs
down the jth column of S, or across frequencies, for the jth

simulation.
For example, using switch matrix S in Fig. 3 at the 0th

simulation, a parallelized logic gate is defined over the ob-
served gains:

{GS00
(ω0), GS10

(ω1), GS20
(ω2), GS30

(ω3)} (5)

When a unique switch string is used for each of the four
driving frequencies in the jth simulation, the identity of the
parallelized gate for that simulation is determined by the tar-
get gains associated with each cell in the corresponding col-
umn. These are set by the choice of sequential logic gates
occurring over fixed frequencies, and their associated target
gains. For example, if a sequential NAND gate is chosen for
frequency ω0 with S0: = [‘10’, ‘11’, ‘01’, ‘00’], the paral-
lelized logic gate defined at the 0th simulation is constrained
to exhibit high gain at the output particle under switch string
‘10’ for frequency ω0. This constraint thereby eliminates
e.g. NOR from the set of candidate gates to be computed in
parallel at the 0th simulation. The full identify of the parallel
gate for the jth simulation is then determined by the choice
of sequential logic gates at the remaining three frequencies.

Achieving a parallelized logic gate at each simulation in
a C = 4 polycomputational assembly limits S to the set
of 4 by 4 Latin squares (n=576), for which a switch string
occurs exactly once in each row and column. If the entries
of S were randomly permuted, it is unlikely that the capacity
for parallelization would be preserved, since the number of
logically possible matrices far exceeds the number of Latin
squares. Thus, refractive computation may be a property
that ‘flickers’ in and out of existence when input drives don’t
obey fixed patterns (Varley, 2022).

By varying the choice of sequential logic gates, differ-
ent parallelized logic gates can be defined over the columns
of S. Our experimental proof of concept evolves the de-
sign of granular assemblies to compute sequential logic
gates [NAND, AND, NOR, OR] with respective frequen-
cies ω =[12Hz, 9Hz, 18Hz, 4Hz], for a fixed Latin square
(Fig. 3), yielding four distinct parallelized logic gates,
[IMPLYBA, NIMPLYAB, NIMPLYBA, IMPLYAB], all
of which are universal. Here, IMPLYAB symbolizes ma-
terial implication, equal to ¬A∨B, for input particles A=I0

and B=I1; while NIMPLYAB symbolizes nonimplication,
A ∧ ¬B.

Finally, we note that if logic gates can be parallelized
across frequencies, ω, under switch strings, S:j in the jth

simulation, by postulating that every input to a logic gate can
be simultaneously evaluated at a different frequency, then
logic gates may be defined for which each input occurs at a
different frequency in a different simulation. Examples of
this variety are visualized in Fig. 3 on the diagonals of the
matrix, S (XOR and XNOR).

Methods
Simulation.
We follow the experimental protocol detailed in (Parsa et al.,
2023). Granular assemblies are simulated according to the
Discrete Element Method. For each assembly, 30 friction-
less particles of variable stiffness ratios ∈ [0.05, 10], hav-
ing mass=1 and diameter=0.1, are placed on a 5 by 6 2D
triangular lattice with a periodic boundary condition along
the x-axis. Particle-particle interactions are then modeled
as repulsive forces with a Lennard-Jones potential. Prior
to the application of external drives, the initial positions of
particles are adjusted by the Fast Inertial Relaxation En-
gine (FIRE) to ensure stable particle packing (Bitzek et al.,
2006). Under external drives, a simulation time of 5e3
was used. Code for these experiments can be found at
https://github.com/shawnbeaulieu/Refractive-Computation.

Evolution.
Designing a granular assembly that computes a sequential
logic gate is a complex engineering problem for which an
evolutionary algorithm was previously used (Parsa et al.,
2023). To simplify the task of evolution in this paper, only
the locations of the input, output, and source particles, as
well as the stiffness ratios of all particles, were evolved using
the Age-Fitness Pareto Optimization algorithm, or AFPO
(Schmidt and Lipson, 2010). Other properties, like particle
mass (1.0) and diameter (0.1), were held constant. Genomes
were represented as vectors containing 30 stiffness ratios ∈
[0.05 (soft) , 10 (stiff )] and four indices, giving the locations
of I0, I1, O, and source particle (src), respectively.

Genomes were then realized in simulation as 5 by 6 gran-
ular assemblies, and subject to all logically possible switch
strings for four two-input logic gates, each occurring at one
of four different frequencies ω=[12Hz, 9Hz, 18Hz, 4Hz]. At
12 Hz, we selected for a NAND gate using ordered switch
strings S0: (Fig. 3), at the same time that we selected for
an AND gate, a NOR gate, and an OR gate at respective
frequencies [9 Hz, 18Hz, and 4Hz] using respective switch
strings S1:, S2:, S3:. Given these frequencies, gates (NAND,
OR) and (AND, NOR) are harmonic pairs. Fitness was
defined as the cumulative L2 loss of the observed gains,
GSc(ωc), with respect to target gains, TSc(ωc), at the cth

gate, for all 4 gates evaluated simultaneously:

Fitness =

C−1∑
c=0

2K−1∑
k=0

(TSc(k)(ωc)−GSc(k)(ωc) )
2 (6)

Raw gains are are clipped at a value of 1. For stiffness ra-
tios, a Gaussian mutation operator with a standard deviation
of 0.5 was applied with probability=0.75; while mutations to
the indices of ports (I0, I1, O, src), occurred with probabil-
ity=0.25, and changed a randomly sampled port location to
another random particle taken from the set of particles not
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currently being used as any of the four ports. 10 indepen-
dent trials were conducted, each starting with a randomly
initialized population of size 175. Each trial was run for
1800 generations. Parallelized logic gates, defined across
frequencies, as well as any logic gate defined across simula-
tions and frequencies (i.e. logic gates defined on the diago-
nals of S) were not explicitly selected for.

Comprehensive analysis of the optimal choice of driving
frequencies will be the subject of future research. However,
we observed mean fitness scores for the best performing ma-
terial over 5 independent runs for the following treatments:
(i) all frequencies set to prime numbers [3Hz, 5Hz, 7Hz,
11Hz] for gates 1-4 (mean=1.03 ± 0.166); (ii) all frequen-
cies set to harmonic multiples of 4, [4Hz, 8Hz, 12Hz, 16Hz]
(mean=0.82 ± 0.03); (iii) harmonic pairs (NAND, AND)
and (NOR, OR), [12Hz, 4Hz, 18Hz, 9Hz] (mean=0.70 ±
0.12); (iv) harmonic pairs (NAND, NOR) and (AND, OR)
(mean=0.83 ± 0.084); and (v) harmonic pairs used in the
main treatment, but with frequencies swapped within each
pair, [4Hz, 18Hz, 9Hz, 12Hz] (mean=0.82 ± 0.05). For the
main treatment: mean=0.62 ± 0.11.

Results
Fitness at each generation for the population average and
population minimum in each evolutionary trial is reported
in Fig. 4A. Since only cumulative loss is reported as fitness,
proficiency on any single computation is obscured. For ex-
ample, the fitness for the fittest individual across all trials
resolves into L2 losses of 0.02, 0.28, 0.13, and 0.04 for
NAND, AND, NOR, and OR, respectively. While for the
parallelized gates we find L2 losses of 0.03, 0.07, 0.09, and
0.15 for IMPBA, NIMAB, NIMBA, and IMPAB. The ob-
served gains from which loss is calculated under the switch
strings, S (Fig. 3), are reported in Fig. 4B. Mean and stan-
dard deviation for logic gates defined across the rows of S
are given in the top right column for the fittest individuals
(pop. min). We find that evolution struggles to uniformly
minimize loss on all logic gates, and struggles specifically
to optimize the AND gate. Persistent trouble with comput-
ing AND across evolutionary trials may indicate a systemic
bias caused by hyperparameter settings, such as the choice
of driving frequencies.

Next we evaluate sensitivity to changes in driving fre-
quency for the fittest evolved material (Fig. 6A). For each
evolved gate, we vary the frequency of the driving force for
that gate in the range [1Hz, 40Hz], and observe the effect
this has on fitness for all four logic gates. Changing the driv-
ing frequency for any single logic gate is always deleterious
relative to the native frequency of that gate. However, the
effect on other logic gates appears marginal, except in the
case that the new frequency for the altered gate coincides
with the native frequency of another gate. Here we observe
error spikes that are likely the result of interference between
gates.

Fig. 6B visualizes how the computation of sequential
logic gates at their native frequency is distributed in the gran-
ular assembly for an evolved individual. For each sequential
logic gate, we compute the fitness for that gate should the
index of the output port be changed to that of any other par-
ticle. The fitness calculated for an alternative output particle
is then used to color that particle in the heat map. This al-
lows us to visualize where, and to what extent, each gate
is computed by the material. We find that computation is
not confined to a single location, but varies depending on
the identity of the gate, and tends not to be concentrated in
the stiffest particles (Fig. 1). At the same time, distributed
computation reveals candidate locations from which to read
out logic gates in the event of injury, malfunction, or design
modifications to the material.

Finally, we document the performance of the fittest
evolved material under changes to the switch matrix, S. We
consider only the set of remaining Latin squares (n=575)
as alternative switch matrices. Because Latin squares dif-
fer in the order of switch strings along their columns and
rows, the identity of parallelized logic gates for each simu-
lation will likewise change, under the constraint that NAND,
AND, NOR, and OR are evaluated sequentially at frequen-
cies ω. In Fig. 5A (bottom) we show a randomly sampled
switch matrix, whose permuted entries result in the paral-
lelized gates [XNOR, XOR, ALL, NONE]. Different Latin
squares may be used to generate different parallelized logic
gates. Indeed, we find that the remaining 12 logically pos-
sible gates emerge as parallel gates within some subset of
Latin squares, with each two-input logic gate appearing in
precisely 192 cases (or 33% of Latin squares).

The top matrix reports the observed gains at each fre-
quency and simulation under the new pattern of inputs.
Since the evolved material was only ever exposed to a fixed
pattern of inputs, and the new pattern of inputs may cause
previously independent input drives to co-occur at the jth

simulation, there is likely to be either mechanical interfer-
ence or loss of evolved synergy between input drives. Nev-
ertheless, for the visualized switch matrix we observe be-
havior adequate to regard as computing all four sequential
logic gates, and all four parallel logic gates. Gates on the
diagonal are no longer defined for this matrix.

In Fig. 5B, we give the mean performance for all 16 log-
ically possible two-input gates over all 576 Latin squares.
For this metric, we threshold gain values at 0.35, where
G<0.35 = 0 and G≥0.35 = 1, and report a value of 1 if all
relevant gains for a given logic gate are above this threshold,
and a value of 0 otherwise. This threshold was selected ar-
bitrarily by inspection and then applied uniformly across the
set of Latin squares. The numbers reported are then the per-
cent of Latin squares for which a logic gate appears and is
computed by the material. Boxes with blue text give the per-
formance of parallelized gates, while boxes with the labels
of the evolved sequential gates demonstrate the robustness
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of each such gate to changes in the ambient forces acting
on the material. For example, the computation of NAND at
frequency ω0 successfully occurs 33% of the time when the
input drives at ω1:4 are shuffled by the use of a new Latin
square. While the computation of OR at ω3 is successfully
computed under all considered changes to the pattern of in-
put drives.

Conclusion

In the preceding sections, we reported on the automated de-
sign of a simulated granular metamaterial which instanti-
ates logic gates that are parallelized over driving frequen-
cies. Parallel logic gates are possible because of a pre-
viously demonstrated property called polycomputation, in
which multiple operations can be performed at the same time
in the same place. Polycomputation is a consequence of
the principle of superposition, which holds when simulta-
neous external drives on a system can be resolved into each
drive acting independently. In this paper, polycomputation
of multiple logic gates happens at different frequencies of
driving force acting on a sheet of idealized particles. Paral-
lelized logic gates exploit the fact that when polycomputa-
tional density is sufficiently high, and when external drives
act on particles in a particular way, additional computations
can be defined across driving frequencies and computed all
at once in a single simulation. We therefore achieve with
these results greater computational density and efficiency
than prior work. More provocatively, if the specific oper-
ations that realize a given computation can themselves be
used to realize additional computations, depending on how
these operations are interpreted, our work may impinge on
the notion that we can simulate how a living system exe-
cutes and exploits specific computations without exactly re-
producing the operations it performs. Or that the details of
the mechanism responsible for a given computation can be
ignored insofar as this computation is successfully executed.
Under an observer-dependent view of computation, it may
not be obvious whether the behaviors of a living system we
observe and label as instantiating particular computations
are those that the system itself uses—now or in the future.
One might look at our granular assembly and see only four
sequential logic gates. Another observer may see something
entirely different.

Although parallelized logic gates depend on a precise or-
dering of input drives, our analysis shows that parallelized
gates are modestly robust to permuted patterns of driving
force (Fig. 5B). Additional limitations of this work include
that physical simulations are highly idealized, to the point
where particles are assumed to be frictionless, and that com-
putations more complex than two-input logic gates aren’t
considered. Future work will elaborate on all of these short-
comings with the aim of real world implementation.
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